

A Stochastic Framework for Analyzing Long-run CO2 Abatement Strategies

A Project of the California Energy Modeling and Analysis Consortium (CEMAC)

> 4th Annual California Climate Change Conference September 12, 2007

About CEMAC

- Initiated in 2005 by Jane Long, Associate Director, Energy & Environment Directorate, Lawrence Livermore National Laboratory – funding provided by LLNL
- Research team:
 - John Weyant, Stanford Principal Investigator
 - Alex Farrell, UC Berkeley
 - P. S. Koutsourelakis, Cornell
 - Alan H. Sanstad, LBNL
 - Sonia Yeh, LLNL
- Goal is to develop advanced quantitative methods for addressing energy and environmental policy issues

Policy and methodological context

- Policy problems are increasingly complex and interconnected, and must be approached comprehensively -
 - GHG emissions reductions and carbon management
 - Petroleum supply security and import dependence
 - Large-scale transition to a sustainable energy system
- Analytical methods must jointly address a host of factors, including
 - Uncertainty
 - Technological innovation
 - Outcomes of R&D
 - Demand response to prices
 - Public policies (e.g. markets vs. command and control)
 - Social and political influences and dynamics

Addressing Long-run Energy-Environmental Issues

- Numerical models are the dominant tool, including
 - Computable general equilibrium (CGE)
 - Partial equilibrium energy system
 - Optimization, mathematical programming
- Key trends in model development have been toward
 - Increasing levels of detail and complexity
 - Longer time horizons for application to climate and GHG policy
- The resulting dilemma: Both the detail and the time horizons are needed for policy-making, but
 - "Black-box" problem: Models, and their outputs, may be very difficult to understand
 - Significant but mostly un-analyzed uncertainties in policy prescriptions, underlying data, model structures and assumptions, etc.

Figure 1. EMF-16 Model Predictions of Marginal Abatement Costs for the US Derived from the No Trade and Annex I Trading Scenarios¹⁰

Table TS.3. Carbon Prices at Various Points in Time for the Stabilization Scenarios

	2020 (\$/tonne C)			2030 (\$/tonne C)		
Stabilization Level	IGSM	MERGE	MiniCAM	IGSM	MERGE	MiniCAM
Level 4	\$18	\$1	\$1	\$26	\$2	\$2
Level 3	\$30	\$2	\$4	\$44	\$4	\$7
Level 2	\$75	\$8	\$15	\$112	\$13	\$26
Level I	\$259	\$110	\$93	\$384	\$191	\$170

	2050 (\$/tonne C)			2100 (\$/tonne C)		
Stabilization Level	IGSM	MERGE	MiniCAM	IGSM	MERGE	MiniCAM
Level 4	\$58	\$6	\$5	\$415	\$67	\$54
Level 3	\$97	\$11	\$19	\$686	\$127	\$221
Level 2	\$245	\$36	\$69	\$1,743	\$466	\$420
Level I	\$842	\$574	\$466	\$6,053	\$609	\$635

These assumptions of where, when, and what See Box 3.2 for more on converting between

Addressing uncertainties using existing models

- Our current focus is analyzing strategies, pathways, policies, etc., for achieving significant long-run CO2 emissions abatement at "reasonable" cost, e.g.,
 - AB32 2050 target
 - Bingaman, McCain-Lieberman, and other bills in the U. S. Congress
- The technical challenge is to
 - Address major uncertainties while
 - "Leveraging" existing models that are being used to study this problem but are not designed for uncertainty analysis
 - Do this in a way that increases insight rather than complexity

NEMS Projection: Primary Energy Consumption by Fuel (quadrillion Btu)

Optimal Solution

From a forecasting-based to a goal-directed framework

- We approach modeling and analysis of long-run cost effective abatement as a system design problem under conditions of
 - Uncertainty about future values of key parameters
 - Complexity of both the underlying policy problem and the model(s) we use to analyze it
- We also take into account that the ultimate "appropriate" emissions reductions targets are uncertain (although the political process deals with specific values)

Defining the problem

Given

- Probabilistic uncertainties in key model parameters
- Model variables and/or parameters that represent social, policy, and political decisions determining the implementation of emissions abatement strategies

we characterize the "policy landscape" and identify regions likely to meet policy goals

- Our current example: Given
 - Uncertainties in characteristics such as costs of future low-carbon technologies, and in fuel prices and
 - Low-carbon technology deployment rates as "policy levers,"

What policy choices are likely to succeed in reducing national energy-sector CO2 emissions by 30-50% by 2050 with no more than a 1% increase in GDP?

Technical approach

- This fits within the paradigm of certain problems in engineering reliability theory:
 - Choose design features of a complex system under uncertainty so as to maximize the probability of successful system performance
- The "complex system" is an existing computer model, to which we apply methods of computational statistics and decision analysis within a speciallydesigned software environment:
 - Sequential importance sampling
 - Statistical learning and Bayesian inference

Analytical and computational framework

What "answers" look like

- This overall architecture is that of "inverse" methodologies: Given a target, goal, or other desired state, how do you get there?
- We can compute, for example:
 - Landscapes or regions that yield specified likelihoods of meeting the joint emissions/cost criterion
 - Regions that yield specified emissions reductions for a given likelihood
- We can explore global model sensitivities under uncertainties
- The following graphs illustrate these ideas when the policy levers are deployment levels of low-carbon technology deployment, and uncertain parameters are future technology costs and fuel prices

Fixed Probability Surfaces for a Varying CO2 Reduction

Varying Iso-Probability Surfaces for a Fixed CO2 reduction

Current demonstration project

- "Kernel" model: MARKAL
 - Market Allocation General framework for an energy system planning model, originally developed at Brookhaven National Laboratory in the 1970s
 - Deterministic inter-temporal linear programming model, emphasizing technological detail
 - We are using the US EPA's version (database) time horizon recently updated to 2050

Simplified MARKAL "Reference Energy System"

Objective: Minimize discounted Total Energy System costs

Decision variables: Fuel uses, technology investments,

imports/exports

Constraints: Satisfy Energy Demands

Use Only Available Resources

Use Only Available Technologies (costs and efficiencies)

First experiments: Electric power and transportation

- Policy questions:
 - How can increased deployment of
 - Low-carbon generation and efficient electricity end-use technologies, and
 - Biofuels

contribute to meeting long-run cost-effective abatement goals?

- How do interactions between the electricity and transportation sectors affect policy choices and outcomes?
- Uncertainties in technology costs, oil and natural gas prices, feedstock and conversion costs – and correlations
- Policy levers: Technology R&D, deployment decisions

Conclusion

- We have developed an analytical and computational methodology for analyzing complex, long-run energy/environmental policy problems that
 - Addresses fundamental uncertainties in forecasting, measurement, and model design
 - Applies modern tools of computational statistics, decision analysis, economics, and software engineering
 - Leverages existing numerical models, technology information, and other resources
 - Moves from a forecasting to a goal-oriented, system design paradigm
 - Enables identification of robust policy strategies
- Demonstration projects will be completed by December 2007 – planning and funding solicitations for future work are underway